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critical to test the efficacy of specific disease pre-
vention strategies applied not only within donor
and recipient communities, but also in the realm
where they intersect.
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An Emerging Disease Causes Regional
Population Collapse of a Common
North American Bat Species
Winifred F. Frick,1,2* Jacob F. Pollock,3 Alan C. Hicks,4 Kate E. Langwig,4,1 D. Scott Reynolds,5,1
Gregory G. Turner,6 Calvin M. Butchkoski,6 Thomas H. Kunz1

White-nose syndrome (WNS) is an emerging disease affecting hibernating bats in eastern
North America that causes mass mortality and precipitous population declines in winter
hibernacula. First discovered in 2006 in New York State, WNS is spreading rapidly across eastern
North America and currently affects seven species. Mortality associated with WNS is causing a
regional population collapse and is predicted to lead to regional extinction of the little brown
myotis (Myotis lucifugus), previously one of the most common bat species in North America. Novel
diseases can have serious impacts on naïve wildlife populations, which in turn can have substantial
impacts on ecosystem integrity.

Emerging infectious diseases are increas-
ingly recognized as direct and indirect
agents of extinction of free-ranging wild-

life (1–4). Introductions of disease into naïve
wildlife populations have led to serious declines
or local extinctions of different species in the

past few decades, including amphibians from
chytridiomycosis (5, 6), rabbits from myxomatosis
in the United Kingdom (7), Tasmanian devils from
infectious cancer (3), and birds in North America
from West Nile virus (8). Here we demonstrate
that white-nose syndrome (WNS), an emerging
infectious disease, is causing unprecedented mor-
tality among hibernating bats in eastern North
America and has caused a population collapse
that is threatening regional extinction of the little
brownmyotis (Myotis lucifugus), a oncewidespread
and common bat species.

WNS is associated with a newly described
psychrophilic fungus (Geomyces destructans) that
grows on exposed tissues of hibernating bats,
apparently causing premature arousals, aberrant
behavior, and premature loss of critical fat re-
serves (9, 10) (Fig. 1). The origin of WNS and

its putative pathogen, G. destructans, is un-
certain (9). A plausible hypothesis for the origin
of this disease in North America is introduction
via human trade or travel from Europe, based on
recent evidence that G. destructans has been
observed on at least one hibernating bat species
in Europe (11). Anthropogenic spread of invasive
pathogens in wildlife and domestic animal
populations, so-called pathogen pollution, poses
substantial threats to biodiversity and ecosystem
integrity and is of major concern in conservation
efforts (1, 2).

WNS has spread rapidly and now occurs
throughout the northeastern and mid-Atlantic
regions in the United States and in Ontario and
Québec provinces in Canada and currently affects
at least seven species of hibernating bats (Fig. 2).
Many species of bats in temperate North America
hibernate in caves and mines (12) in aggregations
of up to half a million individuals in a single cave
(13). In late spring, these winter aggregations typ-
ically disperse into smaller sex-segregated groups
of conspecifics, when adult females form mater-
nity colonies and adult males mostly roost alone
(14, 15). From August to October, females and
males assemble at hibernacula or swarming sites
to mate before hibernating (16, 17). The mecha-
nisms for the persistence and transmission of G.
destructans during summer and fall months are
unknown, but spread of the fungus to new geo-
graphic regions and to other species may result
from social and spatial mixing of individuals across
space and time.

During the past 4 years, WNS has been con-
firmed in at least 115 bat hibernacula in the
United States and Canada and has spread over
1200 km from Howe Cave near Albany, New
York, where it was first observed in February

1Center for Ecology and Conservation Biology (CECB), Depart-
ment of Biology, Boston University, 5 Cummington Street,
Boston,MA 02215, USA. 2Department of Environmental Studies,
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Biology, University of California Santa Cruz, 1156 High Street,
Santa Cruz, CA 95064, USA. 4Endangered Species Unit, New
York State Department of Environmental Conservation, 625
Broadway, Albany, NY 12233, USA. 5St. Paul’s School, Concord,
NH 03301, USA. 6Wildlife Diversity Division, Pennsylvania Game
Commission, 2001 EmertonAvenue,Harrisburg, PA16669,USA.
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2006 (9) (Fig. 2). Decreases in bats at infected
hibernacula range from 30 to 99% annually, with
a regional mean of 73%, and all surveyed sites
have become infected within 2 years of the dis-
ease arriving in their region (Fig. 3, A to C). Such
sharp declines and rapid spread raise serious con-
cerns about the impact of WNS on the population
viability of affected bat species.

We investigated the impacts of disease-
associated mortality on the regional population of
little brown myotis in the northeastern United
States by comparing trends in pre- and post-WNS
populations and simulating 100 years of post-WNS
population dynamics to assess the consequences
of the introduction of the disease for bat pop-
ulation viability (18). We used a population matrix
model parameterized with survival and breeding
probabilities estimated from 16 years (1993–2008)
of mark and recapture data at a maternity site of
little brown myotis (19) to estimate population
growth before WNS (table S1). We also calcu-
lated geometric mean growth rates from winter
count surveys of this species conducted over the
past 30 years at 22 hibernacula ranging across
five states in the northeastern United States to
determine regional population trends before the
emergence of WNS (table S2).

Deterministic population growth calculated
from the population matrix model of mean vital
rates was positive [yearly population growth rate
(l) = 1.008], demonstrating that population growth
was stable or increasing before the emergence of
WNS. Estimates of long-term growth rates over
the past 30 years indicate that 86% of hibernacula
(n = 19 out of 22) had stable or increasing pop-
ulations (l = >1). Regional mean growth equaled
1.07 (range: 0.98 to 1.2) (table S2), suggesting
that the regional population was growing before
WNS and that vital rates estimated from the
maternity site represent regional patterns. The
growth of hibernating populations over the past
30 years may be in response to conservation mea-
sures, such as protective gating of mines and
caves (20), the installation of bat houses (21), and
the potential amelioration of impacts from pesti-
cides banned in the 1970s (22).

To assess the impact of disease-related mor-
tality on population viability, we simulated pop-
ulation dynamics using a stochastic population
model that included demographic data from both
infected and susceptible (uninfected) popula-
tions (18). We performed 1000 simulations of
100 years of growth from a starting population
of 6.5 million bats, using means, variances, and
correlations from vital rates (19) that incorporated
environmental variability (23). The probability of
extinction for each year was defined as the pro-
portion of 1000 runs for which the simulated
population dropped below a quasi-extinction
threshold during that year. Quasi-extinction was
specified as 0.01% of the starting population (that
is, 650 bats). Defining extinction thresholds at
low population sizes accounts for processes such
as demographic stochasticity and potential Allee
effects (23–26).

In the simulation model, the susceptible
population retained pre-WNS vital rates esti-
mated from the 16-year mark and recapture
data (19), and infected populations were given
vital rates associated with annual declines cal-
culated from infected hibernacula where con-
secutive yearly counts were available (n = 22)
(18). The increase of prevalence of WNS was
estimated as the percentage of uninfected hi-
bernacula that became infected each year (2007,
5%; 2008, 49%; 2009, 59%) and was incor-
porated into the simulation as the proportion of
the susceptible population that becomes infected
each year.

Because of the inherent uncertainty in predict-
ing the dynamics of a recently emergent disease,
we evaluated the potential for disease fadeout
and its influence on population viability. We es-
timated annual declines for each of 3 years after
infection and constructed nine a priori models to
test hypotheses regarding the influence of den-
sity and time since infection on population growth
rates at infected hibernacula (table S3). From these

estimates, there is little evidence of density-
dependent declines, although model results sug-
gest that the rate of decline ameliorates with the
time since infection (Fig. 3D and table S3). To
incorporate this time amelioration effect into the
simulation model, we used predicted values of
population growth from a nonlinear model [l =
1 − 1.16 × exp(–0.31 × t), where t = years since
infection] for each of 16 years after infection,
when predicted population growth stabilized (l =
1) (Fig. 3D).

We simulated population growth for five
scenarios related to this time amelioration ef-
fect, including declines ameliorated according
to predicted values (Fig. 3D) at each yearly
time step and that persisted at 45% (3rd-year
actual mean), 20% (6th-year predicted mean),
10% (8th-year predicted mean), 5% (10th-year
predicted mean), and 2% (13th-year predicted
mean) per year (Fig. 4). By comparing the
probabilities of extinction over 100 years for
these five scenarios, we evaluated the vulner-
ability of the regional population to extinction,

Fig. 1. (A) Photograph of hibernating little brown myotis infected with WNS. White fungus is visible on
wings, ears, muzzle, and other exposed skin tissues. [Photo: Ryan Von Linden] (B) Bat carcasses piled on
a cave floor, illustrating mass mortality at hibernacula infected with WNS. [Photo: Alan Hicks] (C) Skulls,
bones, and decomposed carcasses covering the cave floor after multiple years of infection. [Photo:
Marianne Moore]
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given the uncertainty in how declines from
disease mortality may persist in the future.

Using vital rates derived from mean declines
in the first 3 years of infection and persisting at
the observed third-year mean decline of 45%
per year thereafter (Fig. 3D), we expect a 99%
chance of regional extinction of little brown
myotis within the next 16 years (Fig. 4A). If de-
clines continue to ameliorate with time since in-
fection, timelines to probable extinction lengthen
but remain greater than 90% by 65 years, even if
declines ameliorate and stabilize at 10% per year
(Fig. 4A). Model results indicate that annual
declines from WNS would have to ameliorate to
less than 5% per year to significantly reduce the
chance of extinction over 100 years (Fig. 4A).
Even if disease mortality lessens over time, the
regional population is expected to collapse from
an estimated starting population of 6.5 million bats
to fewer than 65,000 (1% of the pre-WNS pop-
ulation) in less than 20 years (Fig. 4B).

Our results paint a grim picture of a once-
healthy population of an abundant and widely dis-
tributed species now experiencing unprecedented
losses from WNS and facing a serious threat of
regional extinction within the next 16 years (Fig.
4). Such a severe population decline, especially
if the disease spreads farther south and west of
its current distribution in eastern North America,
may result in unpredictable changes in ecosystem

Fig. 3. (A to C) Population trends of little brown
myotis over the past 30 years at (A) small (<1500
bats), (B) medium (<5000 bats), and (C) large
(>5000 bats) hibernating colonies in the north-
eastern United States. Solid lines represent sites
with bats infected with WNS; dotted lines represent
uninfected sites. Hibernacula infected with WNS
experienced a significant reduction in numbers as
compared to the lowest available count from the past
30 years (Wilcoxon test = 190; P < 0.002). Large
decreases in winter counts at a few hibernacula in the
mid-1990s were related to winter flood events. (D)
Population growth (l) at hibernacula (black circles)
by year since infection. The curved fitted line repre-
sents the nonlinear time-dependent model, showing
amelioration of mortality from WNS until population
growth reaches equilibrium at l = 1 in 16 years
since the first year of infection (vertical dotted line).
The hockey-stick line represents declines from WNS
persisting at the third-year mean of 45% per year,
after a first-year decline of 85% and a second-year
decline of 62%.
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structure and function (27, 28). The rapid geo-
graphic spread of WNS since 2006, coupled
with the severity and rapidity of population de-
clines, support the hypothesis of introduction of
a novel pathogen into a naïve population and dem-
onstrate the seriousness of pathogen pollution as
a conservation issue (1). Our analysis focused
on little brown myotis in the northeastern United
States, but several other bat species are experienc-
ing similar mortality from WNS and may also
be at significant risk of population collapse or
extinction. This rapid decline of a common bat
species from WNS draws attention to the need
for increased research, monitoring, and manage-
ment to better understand and combat this inva-
sive wildlife disease (1).
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Sex-Specific Parent-of-Origin Allelic
Expression in the Mouse Brain
Christopher Gregg,1,2 Jiangwen Zhang,3 James E. Butler,1,2 David Haig,4 Catherine Dulac1,2*

Genomic imprinting results in preferential gene expression from paternally versus maternally
inherited chromosomes. We used a genome-wide approach to uncover sex-specific parent-of-origin
allelic effects in the adult mouse brain. Our study identified preferential selection of the maternally
inherited X chromosome in glutamatergic neurons of the female cortex. Moreover, analysis of the
cortex and hypothalamus identified 347 autosomal genes with sex-specific imprinting features. In
the hypothalamus, sex-specific imprinted genes were mostly found in females, which suggests
parental influence over the hypothalamic function of daughters. We show that interleukin-18, a
gene linked to diseases with sex-specific prevalence, is subject to complex, regional, and
sex-specific parental effects in the brain. Parent-of-origin effects thus provide new avenues for
investigation of sexual dimorphism in brain function and disease.

Genomic imprinting is an epigenetic mode
of gene regulation involving preferential
expression of the paternally or mater-

nally inherited allele (1). Sexual dimorphism is a
central characteristic of mammalian brain func-
tion and behavior that influences major neuro-
logical diseases in humans (2). Here we address
the potential existence of differential genomic
imprinting in the brain according to the sex of
individuals. Imprinting refers to gene expression
differences between maternal and paternal chro-

mosomes (3) and is also used more strictly to
define complete allele-specific silencing (4). Our
analysis encompasses sex differences in parent-

1Department of Molecular and Cellular Biology, Harvard
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USA. 3FAS Research Computing, Harvard University, Cambridge,
MA 02138, USA. 4Department of Organismic and Evolutionary
Biology, Harvard University, Cambridge, MA 02138, USA.
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Fig. 4. (A) Cumulative probability of regional
extinction of little brown myotis for five scenar-
ios of time-dependent amelioration of disease
mortality from WNS, based on matrix model
simulation results. Each scenario represents pre-
dicted time-dependent declines for a specified
number of years after infection and then holds
the decline rate constant at either 45, 20, 10, 5,
or 2% to demonstrate the impact of ameliora-
tion on the probability of extinction over the
next 100 years. (B) Population size in each year
averaged across 1000 simulations for each of
the five scenarios of time-dependent ameliora-
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